Critiquing Knowledge Representation in Medical Image Interpretation Using Structure Learning

نویسندگان

  • Niels Radstake
  • Peter J. F. Lucas
  • Marina Velikova
  • Maurice Samulski
چکیده

Medical image interpretation is a difficult problem for which human interpreters, radiologists in this case, are normally better equipped than computers. However, there are many clinical situations where radiologist’s performance is suboptimal, yielding a need for exploitation of computer-based interpretation for assistance. A typical example of such a problem is the interpretation of mammograms for breast-cancer detection. For this paper, we investigated the use of Bayesian networks as a knowledge-representation formalism, where the structure was drafted by hand and the probabilistic parameters learnt from image data. Although this method allowed for explicitly taking into account expert knowledge from radiologists, the performance was suboptimal. We subsequently carried out extensive experiments with Bayesian-network structure learning, for critiquing the Bayesian network. Through these experiments we have gained much insight into the problem of knowledge representation and concluded that structure learning results can be conceptually clear and of help in designing a Bayesian network for medical image interpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

A Constraint-Based Furniture Design Critic

This paper reports on the Furniture Design Critic. We propose a computational model of design critiquing using the program, which as a research tool helps us explain how to select critiquing methods in the consideration of critiquing conditions. Surveying the literature of architectural education, we have identified two dimensions from critiquing comments: (1) delivery types (interpretation, in...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks

OBJECTIVES To obtain a balanced view on the role and place of expert knowledge and learning methods in building Bayesian networks for medical image interpretation. METHODS AND MATERIALS The interpretation of mammograms was selected as the example medical image interpretation problem. Medical image interpretation has its own common standards and procedures. The impact of these on two complemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010